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P-Stable Obrechkoff Methods with Minimal 
Phase-Lag for Periodic Initial Value Problems 

By U. Ananthakrishnaiah 

Abstract. In this paper P-stable methods of 0(h6) and 0(h8) with minimal phase-lag 
(frequency distortion) arc derived. Numerical results for both linear and nonlinear problems 
arc presented. 

1. Introduction. The development of numerical integration formulae for the direct 
integration of periodic initial value problems 

(1.1) y"(f) = f(t, y), y(tA ) = Yo, y'(tO) = Yo 

has created considerable interest in recent years. The numerical integration formulae 
for (1.1) can be divided into two distinct classes: (a) problems for which the solution 
period is known in advance; (b) problems for which the period is not known. 

Computational methods have been proposed by Gautschi [7], Stiefel and Bettis 
[12] and Jain et al. [10] which can be used to determine the solution to problems of 
type (a). In 1976, Lambert and Watson [11] originated the concept of the interval of 
periodicity and connected it with the symmetry property of the linear multistep 
method 

K K 

(1.2) E ajyn+j = h E +, 
/ O J o 

for the development of numerical integration formulae of type (b) for solving (1.1). 
The characteristic polynomials of (1.2) may be written as 

K K 

(1.3) PM( = E aYt, CY(() E Pant 

The order of the (p, a) method (1.2) is defined to be p if for an adequately smooth 
arbitrary test function z(x), 

K K 

(1.4) E a/z(x +jh) -h2 E fPz"(x + jh) = Cp, 2hp+2Zp 2(x) + O(hP+3), 
/ to ~~J=O 

Received November 16, 1984; revised May 28, 1986 and December 24, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65L05. 
Kev words and phrases. P-stable, Obrechkoff, phase-lag, periodic initial value problems, second-order 

differential equations, undamped Duffing's equation. 

('1987 American Mathematical Society 

0025-5718/87 $1.00 s S.25 per page 

553 



554 U. ANANTHAKRISHNAIAH 

where C is the error constant. The (pa) method is assumed to satisfy the 
following hypotheses (see [11]): 

(i) aK = 1 laol + jIII = 0, E jjO IIj 0, 
(ii) p and a have no common factors, 

(iii) p() = p'() = 0, p"(1) = 2a(1); 
this is necessary and sufficient for the (p, a) method to be consistent, i.e., to have 
order at least one. 

(iv) The method (p, a) is zero-stable. 
The (p, a) method is called symmetric if 

(1.5) aj =aK-j, pi = AK-j for j =0,,..., K. 

Applying the method (1.2) to the test equation 

(1.6) yif= -X2y X, yeR 

and denoting the characteristic equation by 

(1.7) Qi(, H2) = ph() + H2 (M) = 0, H = Xh, 

the following definitions are enunciated by Lambert and Watson [11]: 
Definition 1.1. The method (p, a) is said to have interval of periodicity (0, H02) if 

for all H 2 E (0, H02) the roots (, of Qi( , H2) satisfy 

- 
= e6i,(H) 42 = e-iO(H), lJsl 1, s = 3,4, K, 

for some real-valued function @(H). 
Definition 1.2. The (p,a) method (1.2) is said to be P-stable if its interval of 

periodicity is (0, xo). 
They proved that a necessary and sufficient condition for the (p, a) method to 

have a nonvanishing interval of periodicity is that the method be symmetric and also 
proved that the order of a P-stable (p, a) method cannot exceed two. 

However, higher-order P-stable methods have been discussed by Hairer [9], Cash 
[3], and Chawla [4] by introducing off-step points or higher-order derivatives of 

f (t, y) in (1.2). 
Gladwell and Thomas [8] have analyzed the conditions which ensure an oscillatory 

numerical solution. They noted that the symmetric linear multistep methods pro- 
posed by Lambert and Watson [11] have no algorithmic damping, but do not 
perform well for problems with high frequency natural nodes. They also noted that 
methods with minimal phase-lag (frequency distortion) error perform better than the 
method with no algorithmic damping. They also considered a slightly more general 
test equation 

y" + X2y = vei t 

to derive conditions which ensure that the numerical forced oscillation is in phase 
with the true forced oscillation. Later, Thomas [13] determined phase-lag errors for 
various P-stable methods proposed by Lambert and Watson [11], Cash [3] and 
Chawla [4]. 

Following Gladwell and Thomas [8], Chawla and Rao [5] and Ananthakrishnaiah 
[1] developed two-step methods with minimal phase-lag errors X6h6/12096 and 
X6h6/42000, respectively. The minimal phase-lag method of Chawla and Rao [5] is of 
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0(h4) with interval of periodicity (0, 2.71) whereas the method of Anantha- 
krishnaiah [1] is of 0(h2) and is P-stable. The derivations depend upon the 
definition for phase-lag error given by Brusa and Nigro [2]. 

Definition 1.3. The phase-lag of a numerical method is the leading coefficient of 

(1.8) 0(H)-HH H 

where tan 0(H) = [A(H) - B(H)]1/2/B(H), A(H), B(H) being given by the 
characteristic polynomial 

(1.9) Q(t, H) = A(H) 2 - 2B(H)t + A(H). 

In this article we consider symmetric two-step Obrechkoff methods involving 
higher-order derivatives in the form 

"n 

(1l .10) 8 = E h 2i [ fioy,; ?i 2i3) yt(2i) + ?ioy (2i) 
i=1 

It is noted that one can easily derive an 0(h2) method (Dahlquist method; see [6]), 
0(h4) and 0(h6) P-stable methods with minimal phase-lag errors by using the 
definition (1.8), but it will not yield us an 0(h8) P-stable method with minimal 
phase-lag error. So the motivation of this article is to derive and implement the 
definition for phase-lag error and the conditions for obtaining P-stable methods up 
to 0(h8) with minimal phase-lag errors. Since one can easily verify that the 
definition and conditions introduced in this article produce the same P-stable 
methods of 0(h2) and 0(h4) as the definition (1.8) (for m = 1, 2 in (1.10)), we 
concentrate on presenting P-stable methods of 0(h6) and 0(h8) with minimal 
phase-lag errors using the symmetric multi-derivative two-step methods given by 
(1.10). The methods developed are applied to a test problem and to the nonlinear 
undamped Duffing's equation which has forced oscillations in its true solution, and 
hence it is desirable that the numerical solution is also in phase with the oscillatory 
true solution (see [8]). 

2. Derivation of the P-Stable Methods of 0(h6) and 0(h8) with Minimal Phase-Lag. 
Applying the method (1.10) to the test equation (1.6), we obtain the characteristic 
polynomial 

(2.1) Q(t, H) = A(H) 2 -2B(H)t + A(H), 

where 

(H) 1 + 3 ( 1)' 'fIH2i, B(H) = 1- I (-1)ilI3 H2i 
i=l i=l 

with H2 = X2h2. 

The roots of (2.1) are complex and of modulus one if 

(2.2) ~~~B (H) <1 (2.2) IA( H) 

Let the roots of (2.1) be 

41,2 = e +iO(H) 
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when (2.2) is satisfied. The exact solution of the test equation (1.6) with the initial 
conditions y(to) = yo and y'(to) = yo is given by 

(2.3) y(t) =yocosXt + Y-K sinXt. 

Evaluating (2.3) at t, + 1, tn and tn 1 and eliminating yo and yo, we obtain 

(2.4) y(tn+l) - 2cosXhy(tn) +y(tn1) = 0, 

whose characteristic equation is 

(2.5) 42-2 cos H + I = 0, H = Xh. 

The characteristic equation of (2.1) may be written as 

(2.6) 42- 2cosO(H) + I = 0, 

where cos O(H) = B(H)/A(H). 
Definition 2.1. We define the phase-lag error of the method (1.10) as the leading 

coefficient in the expansion of 

(2.7) 
A(H) cos(H) - B(H) 

H 2 

and denote it by P(H). (The motivation of this definition may be easily noted to be 
the difference in the frequency distortion of the characteristic equations (2.6) and 

(2.5).) 
Taking m = 4 and using (2.7) we obtain 

P(H) = (#lo + p, - ) -( 320 + /21+ 2Po )H2 

(2.8) + (i30 + f31 + #20 + 24 - 720 )H4 

-(/340 + /41 + I30 + 4+ 720 8 

__ __ _2 

24 
20 

+ 
+ ( I3z4041 2 + 24 720 8!- l!)H + O(H10). 

The P-stability condition (2.2) is satisfied if A + B > 0 and A - B > 0, where 

A + B = 2 +(1lo - /ll)H2 -(/20 - 321)H4 +(30 -31)H 

(2.9.1) -(/40-/41)H8, 

A- B = (lo + 1) H2 [1 - /20 + 221.H2 + /30 + /31 H4 10 11[ /310 + /311 
#1 + /311 

(2.9.2) 
/40 + /41 H6 

#lo + P11 

In order that the phase-lag error be of O(H8), we obtain the following order 
conditions to be satisfied: 

(2.10.1) #lo + pi 

(2.10.2) /20 + I21+ 12 
2 24' 

20 +1 2470 
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(2.10.4) /40 + /41+ + 2 + 24 + 720 -8 

One can easily verify that the solution satisfying (2.10) and the P-stability conditions 
(2.9.1) and (2.9.2) is 

1 13 - 9 289 
#10 = 28' #11 28' #20= 11760' #21= 11760' 

1 ~~~19 11 
:3O = 70560' /33= 70560' /4O 2822400 -/4k. 

Hence the method 

8 = 
2 if + 26y,' + - 11)760 (9yv 1 - 578y,7v + 9'v 1) 

(2.11) + 70560 (Yv1 + 38ynvi + ynv 1) 

h viii _2 viii + ynvlii ) 
2822400 ( Yn + 1 - 2 yn1l 

with the truncation error 

7 (10!) + 0(h) 

is a P-stable method of 0(h8) with the minimal phase-lag error 

H 8 
P(H) = 7 (10!) 

Taking m = 3 and using (2.7), we obtain the method 

62 
h 

2 
h 

4 

Y, 20 (yn 1 + I 8yn; + n 600 (Yn+ - 22yn7 + 
(2.12) 6 

14400 (Yn~' + 2yn + Yn-1) 

with the truncation error 

TB = 
h 

v'~ + 0(h10), 50400 

which is a P-stable method of order six with minimal phase-lag P(H) - H6/2.(7!). 

3. Numerical Results. We consider the test problem 

(3.1) ,, -X2y, y(0) = 1, y'(O) = 0 

with X2 = 100. Using the step length h = v/12, the absolute errors in the solution 
y(t) are tabulated in Table 1 for t = 2v(2v)10v. We consider the nonlinear 
undamped Duffing's equation 

(3.2) y"t + y + y3 = Bcos^t 
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with B = 0.002, i = 1.01. The exact solution (see [14]) is given by 

y(t) = A1cosit + A3cos3Qt + Acos5Qt + A7cos7Qt 

where 

A, = 0.200179477536, 

A3 = 0.246946143 (-03), 

A5 = 0.304016 (-06), 
A7 = 0.374 (-09). 

To find the values of y' which occur in calculating ylV and yvi, we use the O(h4) 

differentiation formula given by 

= 2h (3y -n + - 4y + y+ + 2 jn- - yn" 1 ) + 0( h4). 

The implicit methods (2.11) and (2.10) are implemented using Picard iteration with 
error tolerance - = 1.0 E-10. Taking the steplength h = v/5, the absolute errors for 
for t = 2v(2v)10v are presented in Table 2. 

TABLE 1 

Absolute errors iny(t) for the problem (3.1) with h = v/12 

t Method (2.11) Method (2.12) Hairer's Method 

ST 2.06 (-06) 2.40 (-03) 6.49 (-01) 
2vT 9.08 (-06) 1.05 (-02) 1.82 (00) 
4vT 3.80 (-05) 4.38 (-02) 5.66 (-01) 
6vT 8.67 (-05) 9.91 (-02) 9.35 (-01) 
8qT 1.55 (-04) 1.75 (-01) 1.55 (00) 

10 2.43 (-04) 2.70 (-01) 1.10 (-01) 

TABLE 2 

Absolute errors in y ( t ) for the problem (3.2) with h = v15 

t Method (2.12) Hairer's method 

ST 4.53 (-05) 5.03 (-02) 
2vT 1.88 (-04) 4.79 (-02) 
4vT 7.46 (-04) 4.25 (-02) 
6vT 1.63 (-03) 3.64 (-02) 
8qT 2.78 (-03) 2.97 (-02) 

10 4.11 (-03) 2.26 (-02) 

4. Acknowledgment. This research work is supported by the National Science and 
Engineering Research Council operating grants of Professors R. Manohar and J. W. 
Stephenson. The author is grateful to the referee for his helpful suggestions, which 
improved the presentation of the article. 

Department of Mathematics 
University of Saskatchewan 
Saskatoon, Saskatchewan, Canada S7N OWO 



P-STABLE OBRECHKOFF METHODS WITH MINIMAL PHASE-LAG 559 

1. U. ANANTHAKRISHNAIAH, A class of two-step P-stable methods for the accurate integration of 
second order periodic initial value problems," J. Comput. Apple. Math., v. 14, 1986, pp. 455-459. 

2. L. BRUSA & L. NIGRO, "A one-step method for direct integration of structural dynamic equations," 
Internal. J. Numer. Methods Engrg., v. 15, 1980, pp. 685-699. 

3. J. R. CASH, "High order P-stable formulae for the numerical integration of periodic initial value 
problems," Numer. Math., v. 37, 1981, pp. 355-370. 

4. M. M. CHAWLA, "Two-step fourth order P-stable methods for second order differential equations," 
BIT, v. 21, 1981, pp. 190-193. 

5. M. M. CHAWLA & P. S. RAO, "A Numerov-type method with minimal phase-lag for the integration 
of second order periodic initial value problems," J. Comput. Apple. Math., v. 11, 1984, pp. 277-281. 

6. G. DAHLQUIST, "On accuracy and unconditional stability of linear multistep methods for second 
order differential equations," BIT, v. 18, 1978, pp. 133-136. 

7. W. GAUTSCHI, "Numerical integration of ordinary differential equations based on trigonometric 
polynomials," Numer. Math., v. 3, 1961, pp. 381-397. 

8. I. GLADWELL & R. M. THOMAS, "Damping and phase analysis for some methods for solving second 
order ordinary differential equations," Internat. J. Numer. Methods Engrg., v. 19, 1983, pp. 493-503. 

9. E. HAIRER, "Unconditionally stable methods for second order differential equations," Numer. 
Math., v. 32, 1979, pp. 373-379. 

10. M. K. JAIN, R. K. JAIN & U. ANANTHAKRISHNAIAH, P-stable methods for periodic initial value 
problems of second order differential equations," BIT, v. 19, 1979, pp. 347-355. 

11. J. D. LAMBERT & I. A. WATSON, "Symmetric multistep methods for periodic initial value 
problems," J. Inst. Math. Apple , v. 18, 1976, pp. 189-202. 

12. E. STIEFEL & D. G. BETTIS, "Stabilization of Cowell's methods," Numer. Math., v. 13, 1969, pp. 
154-175. 

13. R. M. THOMAS, "Phase properties of high order almost P-stable formulae," BIT, v. 24, 1984, pp. 
225-238. 

14. R. VAN DOOREN, "Stabilization of Cowell's classical finite difference method for numerical 
integration," J. Comput. Phys., v. 16, 1974, pp. 186-192. 


